Mathematics

[Mathematics#4] The Matrix Equation AX=b (Linear Equations in Linear Algebra#4)

j.d 2024. 12. 15. 16:51

$A \mathbf{X}$: Product of $A$ and $ \mathbf{X}$

 

$A$ is $m \times n$, with columnns $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$

$$\mathbf{X} \; in \; \mathbb{R}^n$$

 

$$A\mathbf{X}=[\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]\begin{bmatrix}x_1 \\ \vdots\\ x_n \end{bmatrix}=x_1\mathbf{a}_1+x_2\mathbf{a}_2+ \cdots + x_n\mathbf{a}_n$$

 

→ the linear combination of the columns of $A$ using the corresponding entries in $\mathbf{X}$ as weights.

 

Ex. Matrix Equation

$$\begin{bmatrix}1&2&-1\\0&-5&3\end{bmatrix}\begin{bmatrix}4\\3\\7\end{bmatrix} = 4\begin{bmatrix}1\\0\end{bmatrix}+3\begin{bmatrix}2\\-5\end{bmatrix}+7\begin{bmatrix}-1\\3\end{bmatrix}=\begin{bmatrix}3\\6\end{bmatrix}$$

 

Ex. Vector equation to matrix equation

 

Ex. System of linear equations to matrix equation

 

$$\left\{\begin{matrix}x_1+2x_2-x_3=4\\-5x_2+3x_3=1\end{matrix}\right.$$

$$x_1\begin{bmatrix}1\\0\end{bmatrix}+x_2\begin{bmatrix}2\\-5\end{bmatrix}+x_3\begin{bmatrix}-1\\3\end{bmatrix}=\begin{bmatrix}4\\1\end{bmatrix}$$

$$\begin{bmatrix}1&2&-1\\0&-5&3\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}4\\1\end{bmatrix}$$

 

Ex. More efficient way to compute matrix equation

$$\begin{bmatrix}a_{11}&a_{12}&a_{13}
\\a_{21}&a_{22}&a_{23}
\\a_{31}&a_{32}&a_{33}\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=
\begin{bmatrix}a_{11}x_1+a_{12}x_2+a_{13}x_3
\\ a_{21}x_1+a_{22}x_2+a_{23}x_3
\\ a_{31}x_1+a_{32}x_2+a_{33}x_3
\end{bmatrix} $$

 

$$\begin{bmatrix}1&0&0
\\0&1&0
\\0&0&1\end{bmatrix}\begin{bmatrix}r\\s\\t\end{bmatrix}=
\begin{bmatrix}r&s&t\end{bmatrix} $$

 

Theorem 3. 

$A$ is $m \times n$ matrix, with columns $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$, $\mathbf{b}$ is in $ \mathbb{R}^n $

  • Matrix Equation: $A \mathbf{X}=\mathbf{b}$
  • Vector Equation: $x_1\mathbf{a}_1+ x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n=\mathbf{b}$
  • Augmented Matrix: $[\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{b}]$

have the same solution set

→ some linear systems can be seen as 3 way

 

Theorem 4.

$A$ is $m \times n$ matrix, with columns $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$

 

The followings are all true or all false

  • For each $\mathbf{b}$ in $\mathbb{R}^m$, $A\mathbf{x} = \mathbf{b}$ has a solution.
  • Each $\mathbf{b}$ in $\mathbb{R}^m$ is a linear combination of the columns of $A$.
  • The columns of $A$ span $\mathbb{R}^m$
  • $A$ has a pivot position in every row.

Theorem 5. 

If $A$ is an $m \times n$ matrix, $\mathbf{u}$ and $\mathbf{v}$ are vectors in $\mathbb{R}^n$,

and $c$ is a scalar, then

  • $A(\mathbf{u} + \mathbf{v})=A\mathbf{u}+A\mathbf{v}$
  • $A(c\mathbf{u})=cA\mathbf{u}$

 

 

 

 

 

※ Reference

<선형대수학개론 of 조범희(인프런)>