Mathematics

[Mathematics#3] Vector Equations (Linear Equations in Linear Algebra#3)

j.d 2024. 12. 11. 12:58

Vectors in $ \mathbb{R}^2$

$$\mathbf{u}=\begin{bmatrix}3 \\-1\end{bmatrix} =(3,-1), \mathbf{v}=\begin{bmatrix} 0.2 \\0.3 \end{bmatrix} =(0.2,0.3), \mathbf{w}=\begin{bmatrix} w_1 \\w_2 \end{bmatrix} =(w_1,w_2)$$

 

※ vector를 나타내는 기호는 bold로 작성합니다.

※ $ \mathbb{R}^2 $: R2 Space

 

Vector Summarization

$$\mathbf{u}+\mathbf{v}=\begin{bmatrix}3 \\-1\end{bmatrix}+\begin{bmatrix}0.2 \\0.3\end{bmatrix} =\begin{bmatrix}3.2 \\-0.7\end{bmatrix}$$

 

Scalar Multiplication

$$c=5$$

$$c\mathbf{u}=5\begin{bmatrix}3 \\-1\end{bmatrix}=\begin{bmatrix}5\times 0.2 \\5\times0.3 \end{bmatrix} =\begin{bmatrix}15 \\-5 \end{bmatrix}$$

 

Geometric Description of $ \mathbb{R}^2$

$$\mathbf{u}=\begin{bmatrix}2 \\2\end{bmatrix}, \mathbf{v}=\begin{bmatrix}-6 \\1\end{bmatrix},\mathbf{u}+\mathbf{v}=\begin{bmatrix}-4 \\3\end{bmatrix}$$

Vectors in $ \mathbb{R}^3$ 

Vectors in $ \mathbb{R}^n$ 

$$\mathbf{u}=\begin{bmatrix}u_1
 \\u_2
 \\\vdots 
 \\u_n
\end{bmatrix}=(u_1, u_2,\cdots ,u_n)$$

 

Algebraic properties of $ \mathbb{R}^n$ 

$$ \mathbf{u} , \mathbf{v}, \mathbf{w} \; in \; \mathbb{R}^n  $$

$$ c,d: scalar $$

  1. $ \mathbf{u} + \mathbf{v}= \mathbf{v}+ \mathbf{u} $
  2. $ (\mathbf{u}+ \mathbf{v})+ \mathbf{w}= \mathbf{u}+( \mathbf{v}+ \mathbf{w})$
  3. $ \mathbf{u}+ \mathbf{0}= \mathbf{0}+ \mathbf{u}= \mathbf{u}$
  4. $ \mathbf{u}+(-\mathbf{u})= (-\mathbf{u})+\mathbf{u}=\mathbf{0}$
  5. $c(\mathbf{u}+\mathbf{v})=c\mathbf{u}+c\mathbf{v}$
  6. $(c+d) \mathbf{u} =c \mathbf{u} +d \mathbf{u} $
  7. $c(d \mathbf{u})=(cd) \mathbf{u}$
  8. $1 \mathbf{u}= \mathbf{u}$

※ How to prove?

Ex.

$$\mathbf{u}=\begin{bmatrix}a \\b\end{bmatrix},\mathbf{v}=\begin{bmatrix}c \\d\end{bmatrix}$$

$$\mathbf{u}+\mathbf{v}=\begin{bmatrix}a+c \\b+d\end{bmatrix}=\begin{bmatrix}c+a \\d+b\end{bmatrix}=\mathbf{v}+\mathbf{u}$$

 

Linear Combinations

$$ \mathbf{v}_1, \mathbf{v}_2, \cdots,  \mathbf{v}_p \; in \; \mathbb{R}^n $$

$$c_1, c_2, \cdots, c_p: Scalar$$

$$ \mathbf{y} = c_1 \mathbf{v}_1+ c_2 \mathbf{v}_2+ \cdots+ c_p \mathbf{v}_p   $$

 

Ex 1. Can $ \mathbf{b} $ be generated as a linear combination of $a_1$ and $a_2$?

$$ \mathbf{a}_1=\begin{bmatrix}1\\-2\\5\end{bmatrix},  \mathbf{a}_2=\begin{bmatrix}2\\5\\6\end{bmatrix},  \mathbf{b}=\begin{bmatrix}7\\4\\3\end{bmatrix}$$

 

Sol)

A vetor equation

$ x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2+ \cdots+ x_n \mathbf{a}_n  = \mathbf{b} $ has the same solution set the linear system whose augmented matrix is $\begin{bmatrix}a_1 & a_2 & \cdots & a_n & b \\ \end{bmatrix}$

 

→vector equation과 augmented matrix가 서로 긴밀한 관계가 있다.

 

$Span\begin{Bmatrix} \mathbf{v}_1, & \mathbf{v}_2, & \cdots, & \mathbf{v}_p \\ \end{Bmatrix}$ is the collection of all vectors that can be written in the form 

$$ c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2+ \cdots+ c_p \mathbf{v}_p $$

 

※ $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p $를 Span 했다.

 

 

 

Ex. Is a vector $b$ in $Span\begin{Bmatrix} \mathbf{v}_1, & \mathbf{v}_2, & \cdots, & \mathbf{v}_p \\ \end{Bmatrix}$?

 

= Does the following vector equation have a solution?

$$ x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2+ \cdots+ x_n \mathbf{v}_n  = \mathbf{b} $$

 

= Does the following augmented matrix have a solution?

$$ \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{b} \\ \end{bmatrix} $$

 

 

 

 

 

Geometric descriptions of $Span\begin{Bmatrix} \mathbf{v}\\ \end{Bmatrix}$ and $Span\begin{Bmatrix} \mathbf{u}, & \mathbf{v} \\ \end{Bmatrix}$ in $ \mathbb{R}^3$

 

 

 

 

 

 

 

 

 

 

※ Reference

<선형대수학개론 of 조범희(인프런)>