Mathematics

[Mathematics#5] Solution Sets of Linear Systems Linear Equations in Linear Algebra#5)

j.d 2024. 12. 16. 10:46

Homogeneous Linear systems

$A\mathbf{X}=\mathbf{0}$ always has at least one solution $\mathbf{X}=\mathbf{0}$. (Trivial Solution)

 

if and only if the equation has at least one free variables(infinitely many solutions)Nontrivial Solution

 

 

 

Ex. Determine whether there is a nontrivial solution.

$$\left\{\begin{matrix}3x_1+5x_2-4x_3=0
 \\ -3x_1-2x_2+4x_3=0
 \\ 6x_1+x-2-8x_3=0
\end{matrix}\right. $$

 

Sol)

$$\begin{bmatrix}3&5&-4&0
\\ -3&-2&-4&0
\\ 6&1&-8&0
\end{bmatrix}\sim
\begin{bmatrix}1&0&-4/3&0
\\0&1&0&0
\\0&0&0&0
\end{bmatrix} $$

 

$$\left\{\begin{matrix} x_1=4/3x_3
 \\ x_2=0
 \\x_3\;is\;free
\end{matrix}\right.$$

$$\mathbf{X}=\begin{bmatrix}4/3x_3
 \\0
 \\x_3
\end{bmatrix}=x_3\begin{bmatrix}4/3\\0\\1\end{bmatrix}=x_3\mathbf{V},\;where\;\mathbf{V}=\begin{bmatrix}4/3\\0\\1\end{bmatrix}$$

$$Span\begin{Bmatrix}\mathbf{V}\end{Bmatrix}$$→line

 

 

 

Ex. Determine whether there is a nontrivial solution.

$$10x_1-3x_2-2x_3=0$$

$$\mathbf{X}=\begin{bmatrix}0.3x_2+0.2x_3
\\x_2
\\x_3
\end{bmatrix}=
\begin{bmatrix}
0.3x_2
\\x_2
\\0\end{bmatrix}+
\begin{bmatrix}0.2x_3
\\0
\\x_3
\end{bmatrix} $$

$$=x_2\begin{bmatrix}0.3\\1\\0\end{bmatrix}+x_3\begin{bmatrix}0.2\\0\\1\end{bmatrix}$$

$$=x_2\mathbf{u}+x_3\mathbf{v},\;where\;\mathbf{u}=\begin{bmatrix}0.3\\1\\0\end{bmatrix},\;\mathbf{
v}=\begin{bmatrix}0.2\\0\\1\end{bmatrix}$$

$$Span\begin{Bmatrix}\mathbf{u}&\mathbf{v}\end{Bmatrix}$$

→ plane

 

▶ The solution set of $A\mathbf{X}=\mathbf{0}$ can always expressed as $Span\begin{bmatrix}\mathbf{v}_1 & \mathbf{v}_1 & \cdots & \mathbf{v}_p \end{bmatrix}$

※ tirivial solution: $Span\begin{bmatrix}\mathbf{0}\end{bmatrix}$

 

Nonhomogeneous Linear Systems

$A\mathbf{X}=\mathbf{b}$

 

Ex. Describe all solutions

$$A\mathbf{X}=\mathbf{b},\;A=\begin{bmatrix}5&5&-4
\\ -3&-2&4
\\ 6&1&8
\end{bmatrix},\;\mathbf{b}=\begin{bmatrix}7\\-1\\4\end{bmatrix}$$

$$\begin{bmatrix}5&5&-4&7
\\ -3&-2&4&-1
\\ 6&1&8&4
\end{bmatrix} \sim \begin{bmatrix}1&0&-4/3&-1
\\ 0&1&0&2
\\ 0&0&0&0
\end{bmatrix} $$

$$\mathbf{X}=\begin{bmatrix}4/3x_3-1\\2\\x_3\end{bmatrix}=\begin{bmatrix}-1\\2\\0\end{bmatrix}+
\begin{bmatrix}4/3x_3\\0\\x_3\end{bmatrix}=\begin{bmatrix}-1\\2\\0\end{bmatrix}+x_3\begin{bmatrix}4/3\\0\\1\end{bmatrix} $$

$$=\mathbf{p}+t\mathbf{v}$$

= particular solution(fixed vector) + homogeneous solution

→ homogeneous system과 nonhomogeneous system과 밀접한 관련성이 존재함

 

Theorem 6.

Suppose

$A\mathbf{X}=\mathbf{b}$ is consistent and let $\mathbf{p}$ be a solution.

 

Then, the solution set of $A\mathbf{X}=\mathbf{b}$ is the set of all vectors of the form 

$$\mathbf{w}=\mathbf{p}+\mathbf{v}_h$$

where $\mathbf{v}_h$ is any solution of the homogeneous eqation $A\mathbf{X}=\mathbf{0}$.

 

 

Ex. Understanding Theorem 6 in $\mathbb{R}^3$

 

 

 

 

 

 

 

 

 

※ Reference

<선형대수학개론 of 조범희(인프런)>